Downloads

Landslide generated impulse waves (landslide-tsunami) manual

Personal research website of Dr Valentin Heller

· Manual (VAW Mitteilung 254)

· Spread sheets supporting the Manual

4th Coastlab Teaching school in Porto

The following generic hazard assessment manual allows for an efficient estimation of the effects of landslide-tsunamis (impulse waves) in lakes and reservoirs. Note that it is not recommended to apply the spread sheets without having read the manual.

The following presentations were given at the 4th CoastLab Teaching school in Porto in January 2012.

Please contact Dr Heller if you require a preliminary landslide-tsunami (impulse wave) hazard assessment based on our manual. Expertise and contacts are also available if more detailed numerical simulations and/or physical model tests are required.

Some publications involving the 1st and 2nd edition of the manual

Heidarzadeh, M., Heller, V., Zhao, T., Goff, C. (2024). Lessons for dam safety in the UK from the landslide-generated waves incident in the Apporo dam reservoir, Japan. Proc. British Dam Society 22nd Biennial Conference, Keele University, 11th September to Saturday 14th September 2024.

Sattar, A., Goswami, A., Kulkarni, A.V., Emmer, A., Haritashya, U.K., Allen, S., Frey, H., Huggel, C. (2021). Future glacial lake outburst flood (GLOF) hazard of the South Lhonak Lake, Sikkim Himalaya. Geomorphology 388(9):107783.

Ersoy, H., Karahan, M., Gelisli, K., Akgun, A., Anilan, T., Sunnetci, M.O., Yahsi, B.K. (2019). Modelling of the landslide-induced impulse waves in the Artvin Dam reservoir by empirical approach and 3D numerical simulation. Engineering Geology 249(1):112-128.

Nigatu, N., Sigtryggsdottir, F.G., Lia, L., Kemal, A. (2019). Case study of dam overtopping from waves generated by landslides impinging perpendigular to a reservoir‘s longitudinal axis. Journal of Marine Science and Engineering 7(7):221.

Frey, H., Huggel, C., Chisolm, R.E., Baer, P., McArdell, B., Cochachin, A., Portocarrero, C. (2018). Multi-source glacial lake outburst flood hazard assessment and mapping for Huaraz, Cordillera Blanca, Peru. Frontiers in Earth Science 6:201.

Lüthi, M.P., Viele, A. (2016). Multi-method observation and analysis of a tsunami caused by glacier calving. The Cryosphere 10(3):995-1002.

Oppikofer, T., Hermanns, R.L., Sandoy, G., Böhme, M., Jaboyedoff, M., Horton, P., Roberts, N.J., Fuchs, H. (2016). Quantification of casualties from potential rock-slope failures in Norway. Landslides and Engineered Slopes - Experience, Theory and Practice, 1537-1544, Aversa et al., eds.

Battaglia, D., Strozzi, T., Bezzi, A. (2015). Landslide hazard: Risk zonation and impact wave analysis for the Bumbuma Dam-Sierra Leone. Geology for Society and Territory-Volume  2:1129-1134, G. Lollino et al. (eds.), Springer, Basel.

Gabl, R., Seibl, J., Gems, B., Aufleger, M. (2015). 3-D-numerical approach to simulate the overtopping volume caused by an impulse wave comparable to avalanche impact in a reservoir. Natural Hazards and Earth System Sciences 15(12):2617-2630.

BGC (2012). Mitchell Pit Landslide Generated Wave Modelling. Appendix 4-E; BGC Engineering Inc. Vancouver, BC, Canada.

Cannata, M., Marzocchi, R., Molinari, M.E. (2012). Modeling of landslide-generated tsunamis with GRASS. Transactions in GIS 16:191-214.

Fuchs, H., Pfister, M., Boes, R., Perzlmaier, S., Reindl, R. (2011). Impulswellen infolge Lawineneinstoss in den Speicher Kühtai. Wasserwirtschaft 101(1-2):54-60 (in German).

Fuchs, H., Boes, R. (2010). Berechnung felsrutschinduzierter Impulswellen im Vierwald-stättersee. Wasser Energie Luft 102(3):215-221 (in German).

Experimental benchmark test cases for numerical simulations

A number of high quality experimental benchmark test cases have been published with the aim to support the development of numerical codes. These include the following three validation tests published on the SPHERIC (SPH European Research Interest Community) website:

· Chen, F., Heller, V. (2020). Large-scale iceberg-tsunami benchmark test cases. SPH benchmark test case 15, online publication, SPH European Research Interest Community SPHERIC website (https://spheric-sph.org/tests/test-15).

· Heller, V., Rogers, B. (2015). Subaerial landslide-tsunami generation with a rigid slide in a channel (2D) and basin (3D). SPH benchmark test case 11, online publication, SPH European Research Interest Community SPHERIC website (https://spheric-sph.org/tests/test-11).

· Heller, V. (2009). Subaerial landslide generated impulse waves in a wave channel. SPH benchmark test case 7, online publication, SPH European Research Interest Community SPHERIC website (https://spheric-sph.org/tests/test-7).

Some publications involving the benchmark test cases

Fang, Y., Xu, Q., Chen, J., Li, J., Zhang, T. (2024). Investigating landslide-induced tsunamis using a low-dissipation Riemann weakly compressible smoothed particle hydrodynamics model. Ocean Engineering 309:118512.

Hu, C., Wang, Z., Liu, Q. (2022). Characteristics of iceberg calving-generated waves based on three-dimensional SPH simulations. Coastal Engineering 173:104090.

Zhang, G., Chen, J., Qi, Y., Li, J., Xu, Q. (2021). Numerical simulation of landslide generated impulse waves using a “delta+”-LES-SPH model. Advances in Water Resources 151:103890.

Chen, F., Heller, V., Briganti, R. (2020). Numerical modelling of tsunamis generated by iceberg calving validated with large-scale laboratory experiments. Advances in Water Resources 142:103647 (https://doi.org/10.1016/j.advwatres.2020.103647).

Brühl, M., Becker, M. (2018). Analysis of subaerial landslide data using nonlinear Fourier transform based on Korteweg-deVries equation (KdV-NLFT). Journal of Earthquake and Tsunami 12(2):1-21.

Yeylaghi, S., Moa, B., Buckham, B., Oshkai, P., Vasquez, J., Crawford, C. (2017). ISPH modelling of landslide generated waves for rigid and deformable slides in Newtonian and non-Newtonian reservoir fluids. Advances in Water Resources 107:212-232.

Gabl, R., Seibl, J., Pfeifer, M., Gems, B., Aufleger, M. (2017). 3D-numerische Modellansätze für die Berechnung von Lawineneinstössen in Speicher. Österreichische Wasser- und Abfallwirtschaft 69(1):66-75.

Cremonesi, M., Meduri, S., Perego, U., Frangi, A. (2016). An explicit Lagrangian finite element method for free-surface weakly compressible flows. Computational Particle Mechanics, 1-13.

Heller, V., Bruggemann, M., Spinneken, J., Rogers, B. (2016). Composite modelling of subaerial landslide-tsunamis in different water body geometries and novel insight into slide and wave kinematics. Coastal Engineering 109(3):20-41 (doi:10.1016/j.coastaleng.2015.12.004)

Ma, G., Kirby, J.T., Hsu, T.-J., Shi, F. (2015). A two-layer granular landslide model for tsunami wave generation: Theory and computation. Ocean Modelling 93(9):40-55.

Wu, Q., An, Y., Liu, Q.Q. (2015). A smoothed particle hydrodynamics method for modelling soil-water interaction. Procedia Engineering 126:579-583.

James, N., Boyaval, S., Caboussat, A., Picasso, M. (2014). Numerical simulation of 3D free surface flows, with multiple incompressible immiscible phases. Application to impulse waves. International Journal for Numerical Methods in Fluids 76(12):1004-1024.

1st DualSPHysics Users Workshop, Manchester, September 2015

· Presentation A laboratory-DualSPHysics modelling approach to support landslide-tsunami hazard assessment including benchmark test case mentioned above of Heller and Rogers (2015) complemented with numerical simulations

Group Lunch Talks (Dr Heller’s internal research group meetings)

Last modified: 03.01.2025

Work for Industry

Artificial Neural Network code

The code from the Artificial Neural Network developed in Matlab and published by Ruffini et al. (2021) can be downloaded here:

Keynote Lecture

· Keynote lecture Similitude in Hydraulic Modelling (based on Catucci et al. 2021; Heller 2011 and Heller 2017) given at the 9th Int. Symposium on Scale Modelling, Napoli, 03.03.2022

The following generic research complements the manual (see Publications):

· The article Attili et al. (2021) includes an investigation into pressures and forces on dams and essentially confirms the force method presented in the manual.

· The article Liu et al. (2025) investigates the effect of different mass movement types (sliding, falling, overturning) on the wave parameters.

· The article Ruffini et al. (2021) investigates the effect of a range of bathymetries on the wave parameters.